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Abstract. In the paper a Boolean programming problem with single restriction is considered. The definition of

the guaranteed solution and guaranteed subsolution with respect to the coefficients of the restriction condition is
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1 Introduction

Consider the following Boolean programming problem with a single restriction

n∑
j=1

cjxj → max, (1)

n∑
j=1

ajxj ≤ b , (2)

xj = 0 ∨ 1,
(
j = 1, n

)
. (3)

Not disturbing the generality we assume that here cj > 0, aj > 0, (j = 1, n ) and b > 0
are given integers. Under these conditions problem (1)-(3) is called also a Knapsack problem. To
explain the stimulation for consideration of the problem we give here an economic interpretation
for problem (1)-(3). Assume the coefficients aj ,

(
j = 1, n

)
stand for the expenses for the j-

th object, cj ,
(
j = 1, n

)
denote the benefit from the use of the j–th object, b is the general

resource.
The problem is: to choose the objects for which the general investment does not exceed b

and the benefit would be maximum.
Note that problem (1)-(3) is from the NP-integer class. Other words do not exist the methods

with polynomial complicity for finding its optimal solution. But some “branches and bound-
aries”, “dynamic programming”, “combinatory type” methods have been developed for the solu-
tion of the problems with less number of variables (Korbut & Finkelstein, 1969; Kovalev, 2003;
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Emelichev & Komlik, 1981; Martello & Toth, 1990; Pisinger, 1997; Veliyev & Mamedov, 1981).
Sometimes it is expedient to construct approximate (suboptimal) solution to these problems
that is close enough to the exact one.

In this paper we aim to find a solution to problem (1)-(3) that gives value to functional (1)
which is greater than given one using the small variation of the coefficients of the restriction
conditions. That is why this solution is called a guaranteed with respect to the coefficients of
the restriction condition solution.

Note that the definition of the guaranteed solution and guaranteed suboptimal solution
with respect to the right hand side b of the restriction condition or coefficients cj ,

(
j = 1, n

)
of

functional (1) was introduced in (Mamedov & Mamedov, 2012, 2014, 2015, 2018a,b). In addition
the procedures of finding the optimal solutions of the integer and Boolean programming problems
are investigated in (Bukhtoyarov & Emelichev, 2019; Emelichev & Mychkov, 2016; Haldik, 2017;
Emelichev & Nikulin, 2018; Mostafaee et al., 2016).

Here we assume the possibility to find the guaranteed solution not changing the resource b
and coefficients cj ,

(
j = 1, n

)
by variation of the expenses aj ,

(
j = 1, n

)
in some interval.

It should be noted that such problems arise usually in the enterprises with economic diffi-
culties.

2 Formulation of the problem

Suppose that problem (1)-(3) had been solved by some method and its optimal

X∗ = (x∗1, x
∗
2, . . . , x∗n)

or suboptimal solution Xs = (xs1, x
s
2, . . . , xsn) had been found. Then the value of (1) will be

f∗ =
n∑

j=1

cjx
∗
j or fs =

n∑
j=1

cjx
s
j .

Let we aim to get more benefit than the found values f∗ or fs. Other words we want to find
the solutions Xz = (xz1, x

z
2, . . . , x

z
n) or X

zs = (xzs1 , xzs2 , . . . , xzsn ) of problem (1)-(3) such that the
correspond values of functional (1)

fz =
n∑

j=1

cjx
z
j or fzs =

n∑
j=1

cjx
zs
j

are guaranteed to be greater than the numbers f∗ or fs. This means that the conditions
fz ≥ f∗ +∆∗ or fzs ≥ f s +∆s hold. Particularly one may set ∆∗ =

[
f∗ p

100

]
or ∆s =

[
fs p

100

]
.

Here the number p is a given increasing percentage of the numbers (benefits) f∗ or fs, and [z]
stands for the integer part of the number z.

For this purpose we should minimally vary the expenses aj ,
(
j = 1, n

)
in the given interval

[0, αj ],
(
j = 1, n

)
.

Then we get the following new problem

δj → min,
(
j = 1, n

)
, (4)

n∑
j=1

cjxj ≥ f∗ +∆∗, (5)

n∑
j=1

(aj − δj)xj ≤ b, (6)
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0 ≤ δj ≤ αj ,
(
j = 1, n

)
are integers, (7)

xj = 0 ∨ 1,
(
j = 1, n

)
. (8)

Here cj , aj ,
(
j = 1, n

)
, b, f∗ and ∆∗ are given integers, xj and δj ,

(
j = 1, n

)
are unknown.

After the solving process the number aj should decrease by δj .

Note that problem (4)-(8) is multicriteria nonlinear Boolean programming problem (nonlin-
earity is expressed by the product δj • xj in condition (6)).

Thus problem (4)-(8) is also from NP-class. Therefore setting fs instead of f∗ and ∆s instead
of ∆∗ in (4)-(8) we get the similar problem

δj → min,
(
j = 1, n

)
, (9)

n∑
j=1

cjxj ≥ fs +∆s, (10)

n∑
j=1

(aj − δj)xj ≤ b, (11)

0 ≤ δj ≤ αj ,
(
j = 1, n

)
are intergers, (12)

xj = 0 ∨ 1,
(
j = 1, n

)
. (13)

Here cj > 0, aj > 0, αj ≥ 0,
(
j = 1, n

)
, b > 0 and ∆s > 0 are given integers, xj and δj ,(

j = 1, n
)
are searched variables. It is clear that the natural conditions αj < aj ,

(
j = 1, n

)
should be satisfied.

3 Theoretical justification of the method

Here we give some definitions necessary for developing the solution method of problem (9)-(13).

Definition 1. As an admissible solution of problem (4)-(8) we consider n dimensional vector
X = (x1, x2, . . . , xn) that satisfies conditions (5)-(8) for each fixed δj ,

(
j = 1, n

)
.

Definition 2. The admissible solution Xz = (xz1, x
z
2, . . . , x

z
n) is called a guaranteed with respect

to the coefficients of the restriction condition solution of problem (4)-(8) that provides minimal
values to δj ,

(
j = 1, n

)
.

Note that since problem (4)-(8) belongs to the class of multicriteria Boolean programming
problems, it is also from NP-integer class. So there does not exist methods with polynomial
complicity for its solving. From other side problem (4)-(8) is nonlinear (due to the products
δj • xj ,

(
j = 1, n

)
in inequalities (6)). So its solving requires nonreal calculation time. That is

why it is expedient from both theoretical and practical points of view to define its guaranteed
suboptimal solution and develop methods for its finding.

Definition 3. Guaranteed suboptimal solution for problem (9)-(13) is called the vector Xzs =
(xzs1 , xzs2 , . . . , xzsn ) that gives minimal values to δj ,

(
j = 1, n

)
subject to conditions (10)-(13).
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Note that for problem (1)-(3) the definition of the guaranteed with respect to the number
b in the right hand side of restriction (2) and coefficients cj ,

(
j = 1, n

)
of functional (1) was

given by author in the works (Mamedov & Mamedov, 2015, 2018a,b). There the corresponding
algorithms also were developed.

Here in differ from those works we assume that the resources b and the values cj ,
(
j = 1, n

)
are constant aj ,

(
j = 1, n

)
but the expenses should be decreased minimally in the intervals

[0, αj ] ,
(
j = 1, n

)
. For this purpose we offer the solving process for the problem of finding of

the guaranteed with respect to the coefficients of the restriction conditions suboptimal solution
of problem (9)-(13): first we find by some known method any suboptimal solution Xs0 =
(xs01 , xs02 , . . . , xs0n ) of problem (1)-(3), corresponding value fs0 =

∑n
j=1 cjx

s0
j of functional (1)

and the number ∆s =
[
fs0 p

100

]
. Here [z] stands for the integer part of the number z and p

is the increasing percentage of the number fs0 . Then we set fs = f s0 in condition (10) and
get model (9)-(13). Our aim is to find such minimal values for δj ,

(
j = 1, n

)
in the intervals

[0, αj ] ,
(
j = 1, n

)
that provide fulfilment of conditions (10)-(13) in problem (9)-(13). So taking

δj := αj ,
(
j = 1, n

)
and setting a′j := aj ,

(
j = 1, n

)
we remember them. Then take aj := a′j −

δj ,
(
j = 1, n

)
. As a result we get problem (1)-(3) the suboptimal solution X0 = (x01, x

0
2, . . . , x

0
n)

for which may be found by known method and the value

f0 =
n∑

j=1

cjx
0
j

may be calculated. It is clear that f0 > f s + ∆s since the coefficients aj ,
(
j = 1, n

)
have

been decreased maximally. To minimize the values δj ,
(
j = 1, n

)
we use dichotomy principle

and define new quantities δj ,
(
j = 1, n

)
: setting γj := 0, βj := δj , tj := γj , zj := βj , δj :=[

γj+βj

2

]
,
(
j = 1, n

)
find aj := a′j − δj ,

(
j = 1, n

)
. In result we get new intermediate problem

(1)-(3) the suboptimal solution X1 = (x11, x
1
2, . . . , x

1
n) of which and corresponding value

f1 =
n∑

j=1

cjx
1
j

of functional (1) may be found.

Here we get two cases:

Case 1 . f1 ≥ fs +∆s.

Case 2 . f1 < f s +∆s.

In the first case we remember fzs := f1, Xzs := X1. Then to minimize the values

δj ,
(
j = 1, n

)
we set γj := tj , βj := δj , zj := βj , δj := δj , and δj :=

[
γj+βj

2

]
,
(
j = 1, n

)
and take

aj := a′j − δj ,
(
j = 1, n

)
.

In the second case taking γj := δj , βj := zj , tj := γj and δj :=
[
γj+βj

2

]
,
(
j = 1, n

)
we

calculate aj := a′j − δj ,
(
j = 1, n

)
.

It is clear that only one of these cases may occur in each iteration.

So we obtain new problem (1)-(3). Continuing this process in some k-th step we find subop-
timal solution Xk = (xk1, x

k
2, . . . , x

k
n) and corresponding value fk =

∑n
j=1 cjx

k
j of functional (1).

It is clear that the process can be continued till satisfying the relations βj − γj ≤ 1,
(
j = 1, n

)
for all numbers j,

(
j = 1, n

)
. Other words after this the operation of dividing by 2 will give the

same result. Note that if in any l -th step of iteration we get f l ≥ fs +∆s (1 ≤ l ≤ k ) then we
should remember fzs := f l, Xzs := X l and δj = δj ,

(
j = 1, n

)
.

If in some k -th step we have βj −γj ≤ 1,
(
j = 1, n

)
then the vector Xzs = (xzs1 , xzs2 , . . . , xzsn )

will be guaranteed suboptimal solution and the value fzs - searched guaranteed value of function
(1).
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Example. Now we apply the above proposed method to the solving of the following problem

15x1 + 8x2 + 12x3 + 20x4 + 17x5 + 14x6 + 6x7 + 4x8 + 5x9 + 2x10 → max, (14)

10x1 + 6x2 + 10x3 + 16x4 + 14x5 + 11x6 + 4x7 + 3x8 + 4x9 + 2x10 ≤ 30. (15)

xj = 0 ∨ 1,
(
j = 1, 10

)
(16)

Let the values δj ,
(
j = 1, 10

)
should vary in the following intervals

δ1 ∈ [0, 8] , δ2 ∈ [0, 4] , δ3 ∈ [0, 7] , δ4 ∈ [0, 13] , δ5 ∈ [0, 12] , δ6 ∈ [0, 9] ,

δ7 ∈ [0, 3] , δ8 ∈ [0, 2] , δ9 ∈ [0, 3] , δ5 ∈ [0, 1] .
(17)

Here
δj = (8, 4, 7, 13, 12, 9, 3, 2, 3, 1) .

Suboptimal solution of problem (14)-(16) is found by known method and is

X0 = (1, 1, 0, 0, 0, 0, 1, 1, 1, 1).

Then function (14) takes the corresponding value f0 = 40.
If we want to get the value that is greater than f0 by p = 20% then

∆S =
[
f0 p

100

]
=

[
40 • 20

100

]
= 8.

Thus f0 +∆
S
= 48. Then problem (9)-(13) turns to

δj → min,
(
j = 1, 10

)
(18)

15x1 + 8x2 + 12x3 + 20x4 + 17x5 + 14x6 + 6x7 + 4x8 + 5x9 + 2x10 ≥ 48, (19)

(10− δ1)x1 + (6− δ2)x2 + (10− δ3)x3 + (16− δ4)x4 + (14− δ5)x5+

+(11− δ6)x6 + (4− δ7)x7 + (3− δ8)x8 + (4− δ9)x9 + (2− δ10)x10 ≤ 30,
(20)

δ1 ∈ [0, 8] , δ2 ∈ [0, 4] , δ3 ∈ [0, 7] , δ4 ∈ [0, 13] , δ5 ∈ [0, 12] , δ6 ∈ [0, 9] ,

δ7 ∈ [0, 3] , δ8 ∈ [0, 2] , δ9 ∈ [0, 3] , δ5 ∈ [0, 1] ,
(21)

xj = 0 ∨ 1,
(
j = 1, 10

)
. (22)

We set δj = (8, 4, 7, 13, 12, 9, 3, 2, 3, 1) . Then the coefficients aj ,
(
j = 1, 10

)
of condition (15)

take the values aj = (2, 2, 3, 3, 2, 2, 1, 1, 1, 1). Therefore we get f0 +∆
S
= 48 for problem (14)-

(16).
Thus we get intermediate problem (14)-(16). Solution of this problem is

X1 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

and f1 = 103 > 48. It is natural that we should decrease the values δj ,
(
j = 1, 10

)
. Using

dichotomy principle we get

δ1 ∈ [0, 4] , δ2 ∈ [0, 2] , δ3 ∈ [0, 3] , δ4 ∈ [0, 6] , δ5 ∈ [0, 6] , δ6 ∈ [0, 4] ,
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δ7 ∈ [0, 1] , δ8 ∈ [0, 1] , δ9 ∈ [0, 1] , δ5 ∈ [0, 1] .

Since f1 = 103 > 48 we should choose the values δj ,
(
j = 1, 10

)
as δj = (4, 3, 3, 6, 6, 4, 1, 1, 1, 1) .

Then the coefficients of (15) will be as follows aj = (6, 4, 7, 10, 8, 7, 3, 2, 3, 1) . Then solving the
obtained intermediate problem (14)-(16) we find the solution X2 = (0, 1, 0, 1, 1, 1, 0, 0, 0, 1) and
corresponding value of the function f2 = 61 > 48.

It is clear that since f2 > 48 we should decrease the values δj ,
(
j = 1, 10

)
using dichotomy

principle. Continuing the process after the third step we get

min
j

δj = (2, 1, 1, 3, 3, 2, 0, 0, 0, 0) .

Corresponding solution XS = (1, 1, 0, 0, 1, 0, 1, 0, 0, 1) and value for the function fzs = 48. Fi-
nally we get

n∑
j=1

aj = 83,

n∑
j=1

a′j = 68 , ∆ = 83− 68 = 15, f0 = 40, p = 20%,

∆s = 8, f0 + ∆s = 40 + 8 = 48, f0 − f0 = 48− 40 = 8.

Thus we found the solution that guarantees increasing of the cost function by minimum 8 units
under decreasing the coefficients of the restriction conditions by 15 units.
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